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Abstract of gain-scheduling such as the one in Ref. 2 have shown
that controller gains should be scheduled as functions of

The prevalent method of synthesizing nonlinear slowly varying quantities if favorable performance and
missile autopilots is by gain-scheduling linear designs. robustness properties of the individual point designs are
Although this approach has proven successful in to be preserved in the overall scheduled
numerous applications, the desire to continually implementation. Control designers are increasingly
improve performance without incurring additional cost faced with unprecedented performance requirements
suggests the need for a new design paradigm. An which necessitate a large number of point designs to
opportunity to address this need has been identified form an adequate gain schedule. A large gain schedule
from previous research which employed neural network not only requires more time and labor to design, it also
technology to augment approximate dynamic inversion creates the need for more wind-tunnel testing and
controllers. In the one architecture a neural network additional computation and storage capacity in the flight
adaptively cancels linearization errors through on-line control processor.
learning, which may be accomplished by a weight A potential alternative to the present trend toward
update rule derived from Lyapunov theory. This more complicated gain-scheduled designs may be found
effectively guarantees stability of the closed-loop in previous research using neural network technology to
system. This paper concerns a similar implementation in augment approximate dynamic inversion controllers.
which neural networks function instead to improve Ref's 3 and 4 are among the examples of this approach
command tracking of gain-scheduled control laws. This to nonlinear control design. The development to be
theoretical development is then specialized to the presented in this paper, however, is based on the
problem of synthesizing a bank-to-turn autopilot for an architecture of Ref. 5, in which a neural network
agile anti-air missile. Finally, the resulting hybrid adaptively cancels linearization errors through on-line
control law is demonstrated in a nonlinear simulation learning. Said learning is accomplished by a weight
and its performance is evaluated relative to that of the update rule derived from Lyapunov theory,
unaugmented gain-scheduled autopilot, guaranteeing stability of the closed-loop system.

This control design methodology was shown to
perform exceptionally in nonlinear simulation studies of

Introduction fixed-wing and rotary-wing aircraft in Ref's. 5 and 6,
respectively. In Ref. 7, the same technique was used

Historically, the field of missile autopilot design with minor modifications to design a nonlinear bank-to-
has been dominated by the technique of gain- turn autopilot for the agile missile described in Ref. 8.
scheduling. This approach, documented in Ref. 1, is Simulation studies of high angle-of-attack maneuvers
based on linearizing the vehicle's nonlinear equations of indicated that the neural network-based adaptive
motion about several operating conditions. Linear nonlinear controller achieved performance comparable
controllers are then designed for each of these points in to that of a gain-scheduled autopilot with reduced
the flight envelope, and their gains are scheduled as a development effort. This led to further research
function of flight condition to yield a full-envelope centered on more complicated multi-layer neural
nonlinear autopilot. Although this approach has proven network architectures in Ref. 9 and robustness to linear
successful in numerous practical applications, it does unmodeled dynamics in Ref. 10. This paper addresses
have certain disadvantages. Theoretical investigations the question of whether the same neural network

technology could be used to augment an existing gain-
Aerospace Engineer. Member, AIAA. scheduled autopilot rather than an approximate
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design and introducing an adaptive neural network one K _ X 2ý(Onm + 02nr (3)
may be able not only to reduce errors associated with n x

operating at conditions between design points, but also
enlarge the flight envelope beyond what is currently
covered by the gain schedule. While the development in In an effort to achieve this desired response, a gain-
Ref. 11 considered only the simple case of neural scheduled controller may be synthesized by linearizing
networks with no hidden layers, the current Eq. (1) about several operating points and employing
investigation employs the more powerful single-hidden- any suitable linear control scheme. The details of this
layer architecture of Ref. 9. design will be omitted here, as we elect instead to focus

This paper begins by presenting a general on the use of neural networks and adaptive control
architecture for integrating a gain-scheduled control law theory to augment an existing controller. In the interest
with an adaptive neural network with the objective of of simplicity, the current development is based on a
improving command following. Next, this methodology gain-scheduled linear controller with the simple
is applied in the specific context of a missile autopilot proportional-plus-derivative (PD) form:
design problem. An existing gain-scheduled autopilot is
augmented using neural networks, and nonlinear UGS = k, (r - x)+k(- ) (4)

simulation results are illustrate the effectiveness of the where the gains kP > 0 and kd > 0 are functions of the
resulting design. Finally, conclusions and directions for state x. In practice, these gains may depend additionally
future research are presented. on other system parameters, and integral action may

also be included.
Assume that applying the control in Eq. (4) to

Control Design Methodology the dynamics in Eq. (1) yields the closed-loop system:
x = f(x,i)+ g(x,i )u0

The following development concerns a = -o', x - 2•w, ý + 0)2 x, + A(x, i, r, i) (5)
modification of the technique presented in Ref. 11 for =fmAxirr)) )r
augmenting gain-scheduled controllers using neural f (x, i,r)+A(x,kr,i)
networks. The feature which distinguishes this result where an error function (A) has been defined by
from the previous efforts is that it is admits the A(x,*,ri)=f(x,i)+g(x, i)s-fm(X,,r). This error
important class of neural networks with one hidden represents the deviation of the closed-loop dynamics
layer composed of sigmoidal neurons. from the desired response model. It is important to note

that Eq. (5) implicitly assumes that the closed-loop
Problem Formulation system is in fact second-order. While this condition may

be somewhat restrictive, it is unavoidable in the current
Although the development may readily be implementation. Further study is necessary to precisely

generalized to the multi-input, multi-output (MIMO) characterize the implications of this assumption.
case, we will restrict our attention to single-input,
single-output (SISO) case for simplicity of presentation. Neural Network-Based Adaptive Control
Consider a second-order SISO nonlinear system:

R = f(x,, )+ g(x, )11 (1) We are now prepared to augment the system in an
where x(tOO(t)e 9t are the state variables, u(t)e SR is effort to eliminate the effect of the error function

the control variable, and f and g are sufficiently smooth A(x, i, r). To accomplish this, we inject an additional
nonlinear mappings from 91x91 into 9ý . Further, control signal (-uad) at the plant input. This results in the
suppose that the desired response of the closed-loop modified system described by
system is modeled by a linear second-order transfer K=f f(x,k,r)+A(x,,r,i')-g(x, ý )u (6)
function Gm(s): Figure 1 depicts the augmented system of Eq. (6).

2Gm(s)=n (2) A'(x,-ri,u)
rMS s2 + 2 ý01n + (t02

where cO and ý denote the natural frequency and + -
damping ratio, respectively, of the desired response. U
Here, xm represents the state of the desired response g(., Control
model and r denotes an externally applied reference gmentation r

command. Note also that Eq. (2) may be expressed in
differential equation form as follows: Figure 1: Neural Network Augmentation
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Defining the error variable R = xm - x, we may w

subtract Eq. (6) from Eq. (3) to obtain the following
second-order equation for the error dynamics: x1

x= -ox - 2o),x +g(x,k'ui -A(x, i,r,) (7)

Further, define a pseudo-control v using the following X-
control transformation: Y

v u (xk)v (8) (8)

where j(x,x) is a nonsingular approximation of the XN, N2

unknown control influence matrix g(x,R). We may
then rewrite Eq. (7) and substitute to obtain

x = -o', - 2oW• + g(x, a).z + [g(x, 0)-g(x, x)Iok Figure 2: Neural Network with One Hidden Layer

-A(x,x,r, i)
output. The output of the particular multilayer network

=-c-0)- 2• x + v (9) shown in Figure 2 is written mathematically as
- i, Lr,i')- [g(x, i)- g(x, ý)]k-`(x, •i)v} Y __i o(12 jov +0 (12

=-_-2) 2ýwo • + v- A'(x, k, r,i, v) y= wG vxi +0vJ+0 (12)

where all uncertain nonlinear terms have been collected where T is the hidden-layer activation function, vj are
into one uncertainty, denoted by A'. Note that if the first-to-second layer interconnection weights, and wi
j(x, i)= g(x, *) and in particular if j(x, i)= g(x, 0=l , are the second-to-third layer interconnection weights.
then A' =A. It will later be useful to define the pseudo- The bias terms 6, and 0,j represent thresholds. This
control as the sum of two contributions as follows: architecture has N, inputs and N2 hidden-layer neurons.

, 10) The form of the hidden-layer activation function is av =v• -v (1d0armeer
design parameter, but we will consider only the

where vad is an adaptive term to be computed using a sigmoidal functions with activation potential a:
neural network, and V will be designed to account for I
nonlinear parameterization effects. a(z) - (13)

A minimal state-space realization of the W + e
augmented error system in Eq. (9) is then given by We may express Eq. (12) in matrix form as

i = Az+ b[v j - V- A'(x,R,r,ri,v)] (11)
where the thresholds are incorporated into the weight

where z denotes the state vector, A is Hurwitz, and matrices as follows:
bT= [0 1. This is similar to the form of the dynamics wT =[0. wi VT [0v i Vii

considered in Ref. 9. Note that, in contrast with the Here, we have defined
original gain-scheduled controller, it will be necessary yT defiyed
to integrate the state xm of the desired model online.

We now describe briefly the neural network [i xi " ]
architecture used to parameterize A' and compute Vad. (50=[1 Z, z2
The neural network topology, depicted in Figure 2, is A neural network of the type described above is
representative of a common class of feedforward capable of approximating any smooth function to any
networks known as multilayer perceptrons. Because of cablofprxitngnysohfutonoaynetwrksknow asmultlayr prcepron. Beaus of desired accuracy, provided the number of hidden-layer
their universal approximation capability, we will restrict deured accurac ienthe numbe r T hi dden-layer

neurons N2 is sufficiently large. This implies that forattention to networks with a single hidden-layer of continuous A'(x, , r, i,v) and any EN >0 there exists a
sigmoidal neurons (defined below). In Figure 2,

ýE= 91I denotes the neural network input vector, finite N- and "ideal" weight matrices W and V such that

VE 9 1N12 N' denotes the matrix of interconnection A'= wTa(VTy)+t(y) (15)

weights between the input layer and the hidden layer, N2  with II EN . Given the parameterization of A'
is the number of hidden-layer neurons, w C N is the described by Eq. (15), an adaptive neural network of the
vector of interconnection weights between the hidden same structure is therefore used to compute Vad.

and output layers, and y represents the neural network
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v ,Ta(QTT) (16) In preparation for the Lyapunov analysis, rewriteIn t(t) n (t) the error dynamics as follows:
Inthis expression, the network weights =and Az+V WT_ T_ -_are adjustable parameters which will be updated such = +VT- r•+ fV•-E-V (23)

that Vad approximately cancels the effect of A . E 0 m o

An adaptive scheme will be employed to compute Recalling + (d-), (24)

the weight matrices wv and V' on-line so that the =z+wV(&_ F- wax+(V)

network requires no off-line learning phase. The where &' = J(Y',T5) and any extraneous terms have
Lyapunov arguments used to derive stable learning rules been collected into the disturbance signal, d.
also yield the required expression for the pseudo- W - F
control term T. First, assume that the ideal weight d = T&'VT +w T O~vT •) -

matrices are bounded in the sense that IlwllIW and tJdJ ýc, +C, +C, 211 II[+C, 2 (25)
I1V1 F - V , where 11 I1F denotes the Frobenius norm, Ci >0

DIA11= tr{ATA}. When not specified otherwise, The norm-bound on d follows from Eq.'s (19) and (22)
indicates the Euclidean norm. Introducing more along with the boundedness of F and &' by certaincompact notation, we may also write norm inequalities.compactot ,we m l w rith (For the stability analysis, consider a typical choice

Z=[w V]with (17) of Lyapunov function candidate.
The reference command and its first time-derivative are T 1 -t T1 ( 26)
also assumed to be norm-bounded. V2 =2 z+-- 2 + tr (26)

Observing the functional dependencies in 2 2
Observing) thove fnc)tiona deprenenies i, w The Lyapunov analysis is similar to that of Ref. 9, with

Eq's (11) above and (26) to be presented later, we modifications to account for the structure of the error
choose thenetworkinput dynamics in Eq (11). Based on this development,

- T=+ zT r r v. (18) learning rules for the weight matrices are chosen as

L follows:
which is bounded as follows: >0I(9L = I lz'] (27)

IIx- cl +c2 Jlzll+c >0 (19) V =V w & T (l2z7)]
A key result which facilitates the extension of

theory previously developed for simple linear-in- Note that the X terms in Eq. (27) correspond to the

parameters neural networks to more complicated neural e-modification found in adaptive control literature.

networks with one hidden layer has been described in These terms provide additional damping which helps to

Ref. 8. It involves the use of a Taylor series expansion contain the growth of the parameter estimates. In

of the hidden-layer output. First, define the error ad..... the pseudo-control term V in Eq. (10) is

variables i,=ýv-w, V='V-V, and Z=2-Z. defined as
Also, define the hidden-layer output error as follows: v = Kzj 1 +Z)brz (28)

a = 6 --5 = G(JTx)-- a(VT")j (20) where the gain Kz must be chosen such that

The Taylor series expansion of aT about a may then be Kz >C 2  (29)

writtenin order to effectively dominate nonlinear phenomena
associated with parameter errors.

(VT) .V "x x (21) We then conclude that the trajectories of the

w e'i= ( I aclosed-loop error system are uniformly ultimately
bounded provided that, in addition to X > C 3 , either of

with order greater than one. These higher-order terms the following Iwo inequalities hold:
satisfy Eq. (22):

0(ýl-K = P -i (4 x - ()7 4+ =b-(TY~IZ> aA r(30)

O (= > T _<f • c c , +' c 1-VI + c , F+c , Vl , (2 2 ) - (3 0 )

F4 >c/2+ +C4c + +c VC zb
C, >0 where C4 =(X:+Cl)/(?,-C3) and (Y(A) is thewhere the inequality follows from the definition of the

sigmoid function and properties of vector norms, minimum singular value of A.
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Missile Autopilot Application We will now derive simplified models of Eq's. (31)
and (32) which will be used for purposes of linear

In this section, the neural network-based adaptive autopilot design. First we neglect gravitational
control methodology described above is used to acceleration, since it is divided by V. Zeroing the lateral
augment an existing gain-scheduled linear autopilot for dynamics and linearizing the longitudinal dynamics
the agile anti-air missile described in Ref. 8. Studies of about a particular angle-of-attack aýo results in
high angle-of-attack maneuvering have determined that 1
an appropriate strategy for this vehicle is to design a =V +Z(q c +Z +Z6e8 -Txsina° +TzcoscL°)
bank-to-turn autopilot which tracks external guidance (33)
commands in anglc-of-attack while maintaining near- =- 4(Mc,+Mqq+M&6e +MT)
zero sideslip. There are several possible choices for the yy
roll-channel command, including aerodynamic bank where 8, denotes the pitch control input, MT is the
angle (jL), body roll angle (0), body roll rate (p), and pitching moment caused by thrust and

stability-axis roll rate (ps= pcosa + rsina). Whenever Z, = k- = [(aZ/acx-gx -T. -X)coso(
necessary, the following discussion assumes that the [T c
derivatives of external commands are available as - (DX/o_ - ga -T, - Z)sin alc(=o
outputs of a command rate limiter or pre-filter.

Z& -- = [(az/a8,)cos e- (Dx/a8)sin
Nonlinear Dynamics & Gain-Scheduled Design )8)

The motion of a symmetric missile about its M =M MM =M
velocity vector may be described by the following a =o0 -q-q e(0 c[=U0
equations. Neglecting gravity and the constant term Txsinao, we
v=(X+g, +T.)cosaxcosp3+(Y+g, +T)sinp3 may write the linear pitch-plane model

+(Z+g, +T)sinccs13 
[j]=sZp/V 16q]q /V[ 8 ,j34

6j [(Z+g, +T )coso.-(X+g +T )sino(] 1 q + e63
Vcosp (31) A similar process results in the following analogous

+ q - (rsin cc + pcos a)tan P linear design model for the yaw-roll channel:

=- [(X + g, + T, )cos °xsin P + (Y+g, + T, )COS P (Yp/V+sin) LP/Ix) (Yr/V+sinlxx)
V t'_ I P1 L //1. L,/Ix" 1

+(Z+g, +T, )sinaosinp]+psinx- rcosa o NP/lyy N[/Iyy Nr/Iyy (35)

where V, a., and P3 denote airspeed, angle-of-attack, and y/ yr/V 8
sideslip angle while p, q, and r are the body-axis + L&A/I5 5  L/ixx 1
angular rates. The quantities X, Y and Z are the body- Naa/Iyy N&/Iyy J r J
axis components of the acceleration due to aerodynamic n t a h l w l p

forces. Similarly, gx.y,z and T,.y,, denote body-axis In the example which follows, we will use adaptive

components of acceleration associated with neural networks to augment a gain-scheduled autopilot

gravitational effects and thrust, respectively. The designed for the agile anti-air missile featured in Ref. 8

moment equations have the form using linear quadratic regulator theory as described in

L Ref. 12. The design consists of decoupled pitch and
p=- yaw-roll channels, and includes integral control as well

I-• as dependence on vehicle mass and Mach number,

M ( necessitating minor deviations from the technique
q =M+ 1-,. r (32) described above. The general design philosophy,

yy YY however, remains unchanged. For simplicity of

N Ipresentation, we will focus on the longitudinal
f =i q autopilot, which has the form:

where L, M, and N represent aerodynamic moments 6, = k (cL,M,mX)c -(x)+kc(oc,M,m4( -o)cl (36)
about the body axes. Finally, I4, and Iyy are rolling and + kj(,M'm(q

pitching moments of inertia, respectively, and are
assumed for simplicity to have constant or slowly Note that pitch rate q is used as a state variable
varying values, rather than 6, since the equation of motion governing
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angle-of-attack is not easily expressed in second-order perform at least as well as the gain-scheduled autopilot,

form. By virtue of the relationship between & and q, the combination of neural network and gain-scheduled

however, the gain-scheduled control defined by Eq. (29) controller is expected to achieve similar results.

may be seen to bring the closed-loop system into a form Numerical simulation studies have been performed

similar to Eq. (5). using a nonlinear, six-degree-of-freedom (6-DOF)

_=0 - 2•co 6 + 02cX, + A(a,q,c x) simulation of the agile anti-air missile featured in

= f (37) Ref. 8. Figure 3 shows step responses with and without
neural network augmentation for an angle of attack

Assuming that the roll channel can be regulated command with magnitude 90 degrees. This comparison
effectively by a simple proportional feedback control, indicates that the addition of the neural network causes
an implementation similar to the longitudinal design the response to follow the prescribed first-order model.
may be used for the yaw channel.

Neural Network Augmentation -

We now introduce scalar neural network 80

augmentation in yaw, pitch, and roll. A feedforward 70 -

neural network with a single hidden layer is capable of
approximately reconstructing the error function (A) in 60 ,

each channel and may be used to compute Uad(t) as 50 ,

described previously. 40,

V = val (38) 30

V,= ýV,43(VT-j) ih-
[ . .... o network

Moreover, a stable learning rule is again given by /1

Eq. (27). Various neural network topologies and ,0 . .4 0.. • O 1' 2 1'. 4 1' 1.'.

choices of inputs were considered in this study. The FonFigure 3: Angle of Attack Response Comparison
results presented correspond to a neural network with

only five sigmoidal hidden-layer neurons. Each neuron A typical engagement geometry for an agile missile
has an internal activation potential of a = 0.01. Network of this type is the "head-on merge" scenario illustrated

inputs were chosen to include z, r, Vad, 1141F , and in Figure 4. This engagement geometry represents a

Mach number along with the customary bias term. planar intercept with both missile and target trajectories

Although it does not appear in Eq. (16), Mach number evolving primarily in the local horizontal plane.

is included here because its variation affects the Although individual scalar neural networks were

nonlinear inversion error. This does not alter the proof implemented, coupling effects were addressed by
of stability, since iur our purposes Mach number may including cross-channel variables as network inputs.

be considered a bounded, slowly-varying parameter.
The network input r was omitted in order to reduce the

size of the network. The learning rates were chosen to 3..

be y = 500 and F, = 500 x I. The damping coefficient in

the weight update was assigned the value X = 0.01, and RX, "
the term V was neglected for simplicity.

Simulation Results •-,60 7

Based on the results obtained in Ref's 7 and 9, a

properly designed neural network should achieve
desired performance in the face of uncertainty. These -.4..

previous efforts describe implementations in which
neural networks were employed in conjunction with
crudely designed nonlinear control laws derived from -5(X) -o -3('X, -2,X) - I I 10(, 2(X) 310 4a)1 5(X0

approximate dynamic inversion. Since these efforts both Figure 4: Merge Intercept Trajectory
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Figure 5: Angle of Attack and Sideslip Response Figure 7: Yaw RCS Control Comparison
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Figure 6: Pitch RCS Control Comparison Figure 8: Roll RCS Control Comparison

Conclusions
Figure 5 depicts the angle of attack and sideslip

tracking response for the gain-scheduled autopilot with A control design methodology enabling the
adaptive neural augmentation. The sideslip angle integration of recently developed neural network-based
remains within acceptable values, but the overall adaptive control technology with existing gain-
response of the system is somewhat sluggish. This is an scheduled linear controllers has been developed. In the
inherent disadvantage of adaptive schemes, adaptation proposed architecture, a neural network adaptively
occurs over a small but finite interval. These results are augments plant input signals in order to enforce tracking
quite favorable, however, especially considering the fact of a reference model. This development was motivated
that the design technique outlined above does not by previous research involving nonlinear dynamic
explicitly address performance. More research is inversion controllers, which suggested that this design
needed to fully characterize the interaction between the technique could potentially improve both the
nominal closed-loop dynamics associated with the gain- performance and robustness of existing gain-scheduled
scheduled control and the dynamics of the adaptive control laws. As an example, the problem of designing a
neural augmentation system. As expected, Figures 6-8 longitudinal missile autopilot to track commands in
indicate that the results achieved necessitated only angle-of-attack was considered. Nonlinear 6-DOF
slight modification of the RCS thruster commands. This simulation results indicated that a neural network added
is a feature of the neural network implementation, to the longitudinal channel of the gain-scheduled
which does not encourage excessive control activity or autopilot resulted in improved tracking of a reference
actuator saturation. model. This effect was achieved by explicitly
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accounting for nonlinear dynamics through an adaptive 6. Leitner, J., Calise, A., and Prasad, J. V. R.,
neural network parameterization. "Analysis of Adaptive Neural Networks for

Efforts to implement a similar augmentation system Helicopter Flight Controls," AIAA Journal of
for the roll-yaw autopilot are in progress. In addition, Guidance, Control, and Dynamics, Vol. 20, No. 5,
further research is necessary in order to extend this 1997, pp. 972-979.
control design methodology to the more general case
where the order of the closed-loop system under the 7. McFarland, M. B., and Calise, A. J., "Neural-
action of the original gain-scheduled controller is Adaptive Nonlinear Autopilot Design for and Agile

uncertain. This may necessitate the use of dynamic or Anti-Air Missile," AIAA Guidance, Navigation,
recurrent neural network architectures, which include and Control Conference, AIAA-96-3914, 1996.
time-delays and are capable of learning to approximate
the input-output relationships of dynamical systems. 8. Wise, K. A., and Broy, D. J., "Agile Missile
These recurrent architectures are currently the subject Dynamics and Control," AIAA Guidance,
of ongoing research in which they are being employed Navigation, and Control Conference, San Diego,
as parameterizations of uncertain dynamical systems for CA, AIAA-96-3912, 1996.
the purpose of adaptive control.

9. McFarland, M. B., and Calise, A. J., "Multilayer
Neural Networks and Adaptive Nonlinear Control
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